btechnotes.in

Handbook of B.Tech. Programmes offered by USICT at Affiliated Institutions of the University.

	Third Semester										
Group	Paper Code	Paper	L	Р	Credits						
Theory Papers											
ES	ES-201	Computational Methods	4		4						
HS/MS	HS-203	Indian Knowledge System*	2		2						
PC	ECC-205	Signals and Systems	3		3						
PC	ECC-207	Digital Logic and Computer Design	4		4						
PC	ECC-209	Analog Communications	4		4						
PC	ECC-211	Analog Electronics-I	4		4						
Practical / Viva	Voce										
ES	ES-251	Computational Methods Lab		2	1						
PC	ECC-253	Digital Logic and Computer Design Lab		2	1						
PC	ECC-255	Analog Communications Lab		2	1						
PC	ECC-257	Analog Electronics-I Lab		2	1						
PC	ECC-259	Signals and Systems Lab		2	1						
Total			21	10	26						

*<u>NUES</u>:All examinations to be conducted by the concerned teacher as specified in the detailed syllabus of the paper.

		Fourth Semester								
Group	Paper Code	btechnotes.in Paper	L	Р	Credits					
Theory Papers										
BS	BS-202	Probability, Statistics and Linear Programming	4		4					
HS/MS	HS-204	Technical Writing*	nnical Writing* 2							
PC	EEC-206	Network Analysis and Synthesis	3		3					
PC	ECC-210	Microprocessors and Microcontrollers	3		3					
PC	ECC-212	Digital Communications	3		3					
PC	ECC-214	Analog Electronics-II	3		3					
PC	ECC-216	Electromagnetic Field Theory	3		3					
Practical / Viva	Voce									
BS	BS-252	Probability, Statistics and Linear Programming Lab		2	1					
PC	ECC-256	Microprocessors and Microcontrollers Lab		2	1					
PC	ECC-258	Digital Communications Lab		2	1					
PC	ECC-260	Analog Electronics-II Lab		2	1					
PC	EEC-262	Network Analysis and Synthesis Lab		2	1					
Total			21	10	26					

*<u>NUES</u>:All examinations to be conducted by the concerned teacher as specified in the detailed syllabus of the paper.

Paper Code(s): ECC-214	L	Ρ	С
Paper: Analog Electronics – II	3	-	3

Marking Scheme:

- 1. Teachers Continuous Evaluation: 25 marks
- 2. Term end Theory Examinations: 75 marks

Instructions for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.

F Thom	a requirement of (scientific) calculators / log tables / data - tables may be specified if required											4
S. mer	equireine		lentinc)	Calculat	.015 / 10g	-tables /	uala – l	ables m	ay be sp	ecineu ii	required	J.
Course C	Course Objectives:											
1.	To understand Basic building block and characteristic of Op-Amp											
2.	To understand the frequency response and Configurations of Op-Amp											
3.	To anal	yze and o	design lir	hear, no	nlinear a	nd Oscil	lators cir	rcuits usi	ing Op-A	mp		
4.	4. To analyze and design active filters and to understand function of Op-Amp based special ICs											
Course Outcome (CO):												
CO 1	Ability to understand and use Op-Amps to design open-loop and closed loop configuration.											
CO 2	Ability t	o analys	e freque	ncy resp	onse of	and Op-	Amp ciro	cuit.				
CO 3	Ability t	o use Op	o-Amp in	linear a	nd non-	linear ap	plicatior	ns.	/			
CO 4	Ability t	o design	Active F	ilters								
Course C	Outcomes	(CO) to	Program	nme Out	tcomes (PO) Maj	oping (So	ale - 1:	Low, 2: r	nedium,	3: High	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO 1	3	3	3	3	2	1	1	-	2	1 0	-	2
CO 2	3	3	3	3	2	1	1	-	2	1		2
CO 3	3	3	3	3	2	1	1	-	2	1	-	2
CO 4	3	3	3	3	2	1	1	-	2	1	-	2

UNIT – I

The Operational Amplifiers: Block diagram representation of OP-AMP; Evolution of IC and types, Power supply for Op-Amp; The Ideal Op-Amp: schematic, characteristics, equivalent circuit, Ideal voltage transfer curve, typical IC 741 characteristics

Open Loop Op-Amp configurations: The differential amplifier, inverting amplifier, non-inverting amplifier Closed loop Op-Amp configurations: inverting and non-inverting amplifiers, voltage followers, differential amplifiers, closed loop frequency response & circuit stability, single supply operation of OP-AMP, Inverting and Non-Inverting op-amp.

UNIT – II

The Practical Op-Amp: Input offset voltage, input bias current, input offset current, Total output offset voltage, thermal drift, error voltage, Supply voltage rejection ration (SVRR), CMRR

Frequency Response of An Op-Amp: Frequency response compensator networks, High frequency OP-AMP equivalent circuit, open loop voltage gain as a function of frequency, Slew rate, causes of slew rates and its effects in application.

UNIT – III

Linear applications of Op-Amps: Summing, scaling and averaging amplifier (inverting, non-inverting & differential configuration), voltage to current & current to voltage converters, Integrator, Differentiator,

Non-Linear applications of IC op-amps: Comparator, Zero crossing detector, Schmitt Trigger, Clipping & Clamping Circuits, Precision Rectifiers, sample and hold circuit

Oscillators: Principles & Types; Phase shift, Wein-bridge & guadrature. Square wave, triangular wave and saw tooth wave generators, voltage-controlled oscillator

UNIT – IV

Active Filters: Classification and frequency response of filters, response Advantages of active filters, characteristics of butter worth, chebyshev, first order and second order butter worth filters- low pass and high pass types. Band pass & band reject filters.

Specialised IC- The 555 Timer: functional diagram, Monostable and Astable multivibrators; PLL: Basic PLL principle, monolithic 565 PLL; Voltage Regulators, Three terminal IC voltage regulators(LM 317

Textbook(s):

- 1. Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2001.
- 2. D. Roy Choudhary & S. B Jain, "Linear Integrated Circuit", 2nd ed. New age publication.2018.

btechnotes.in **References:**

- 1. Adel S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits Theory and Applications," 5th Edition , OUP, 2004.
- 2. David A. Bell, "Op-amp & Linear ICs", Oxford, 2013.
- 3. James M. Fiore, "Op Amps & Linear Integrated Circuits Concepts & Applications", Cengage, 2010.
- 4. J. Michel Jacob, "Applications and Design with Analog Integrated Circuits", PHI, 2004.
- 5. R. L. Boylestad and N. Nashlesky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Ed., 2014
- Lducatior Analog and Dig 6. J. Millman, C. Halkias, and C. D. Parikh, "Millman's Integrated Electronics: Analog and Digital circuits and system", McGraw Hill Education, 2018.

Paper Code(s): ECC-212	L	Ρ	С
Paper: Digital Communications	3	-	3

Marking Scheme:

- 1. Teachers Continuous Evaluation: 25 marks
- 2. Term end Theory Examinations: 75 marks

Instructions for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.
 5. The requirement of (crientific) calculators / leg tables / data = tables requirement of an article standard in the level of the prescribed textbook.

5. The r	The requirement of (scientific) calculators / log-tables / data – tables may be specified if required.											
Course C	Course Objectives:											
1.	To understand importance of information theory in digital communication and various PCM											
	modula	tion.										
2.	To unde	erstand t	he vario	us basic	concepts	of digita	al comm	unicatior	า.			
3.	To unde	erstand t	he vario	us digital	l Modula	ition-der	nodulati	on techn	iques			
4.	To unde	ersta <mark>nd</mark> v	/arious c	oding in	digital co	ommunio	ations.					
Course C	Course Outcome (CO):											
CO 1	1 Ability to understand the need of digital communication and conversion of analog to digital signals.											
CO 2	Ability to understand the effect of additive white Gaussian Noise on digital communication											
	modula	tion tecl	nniques.									
CO 3	Ability	to analys	se the ef	fect of in	iter syml	ool inter	ference a	as the so	urce of o	channel i	mpairme	ent and
	the effe	ect of mu	iltipath p	henome	non.							
CO 4	Ability 1	to use ar	nd design	commu	nication	systems	for relia	ble comr	nunicati	on 🖉		
Course C	utcomes	s (CO) to	Program	nme Out	comes (I	PO) Map	ping (Sca	ale - 1: Lo	ow, 2: m	edium, 3	B: High)	
CO/PO	PO01	PO02	PO03	PO 04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO 1	3	3	3	3	2	1	1	-	2	1	-	2
CO 2	3	3	3	3	2	1	1	-	2	1	-	2
CO 3	3	3	3	3	2	1	1	-	2	1	-	2
CO 4	3	3	3	3	2	1	1	-	2	1	-	2

UNIT I btechnotes.in

Review of probability theory and Stochastic processes, Poisson and Gaussian Process, Noise, Narrowband Noise, Sinewave plus Narrowband Noise. Sampling Theory, PAM, Quantization characteristics, PCM, DPCM, Delta Modulation, Adaptive Delta Modulation, Line Codes.

UNIT II

AWGN Channel Signalling: Geometric Representation of Signals, Conversion of Continuous AWGN Channel to a vector channel: ASK, QASK, FSK, M-array FSK, BPSK, DPSK, DEPSK, QPSK, M-array PSK, QAM, MSK, GMSK, Coherent and non-coherent detection and other keying techniques.

UNIT III

Band Limited Channels: Error rate due to channel noise in a matched filer receiver, Intersymbol Interference, Signal Design for Zero ISI, Raised cosine and square root raised cosine spectrum, Eye pattern, Adaptive equalization, signalling over multiple baseband channel, Fading Channels: Propagation effects, Jakes Model, TECHNOTES.

Statistical Characteristics of wideband wireless channel, Diversity techniques, MIMO, MIMO Capacity for channel known at receiver, OFDM, Spread-spectrum signals.

UNIT IV

Information Theory: Entropy, Source Coding Theorem, Lossless data compression, Discrete Memoryless channel, Mutual Information, Channel Capacity, Channel Coding Theorem, Differential Entropy and Mutual Information for Continuous Random Ensembles, Information Capacity Law. Error Control Coding: Introduction, Error Control using forward correction, Linear Block Code, Cyclic Codes, Convolutional Codes.

Textbook(s):

1. Simon Haykins, "Digital Communication Systems" John Wiley, 2014

References:

- 1. Simon Haykins and Michael Moher, "Communication Systems" John Wiley &sons Inc, 5th edition, 2009.
- 2. B P Lathi and Zhi Ding, "Modern Digital and Analog Communication Systems", OUP, 5th edition, 2019
- 3. H P Hsu, Schaum Outline Series, Analog and Digital Communications, TMH 2006
- 4. J.G Proakis, Digital Communication, 4th Edition, Tata Mc Graw Hill Company, 2001.

Paper Code(s): ECC-213 / ECC-216	L	Ρ	С
Paper: Electromagnetic Field Theory	3	-	3

Marking Scheme:

- 1. Teachers Continuous Evaluation: 25 marks
- 2. Term end Theory Examinations: 75 marks

Instructions for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) guestion should be compulsory and cover the entire syllabus. This guestion should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.
- The requirement of (scientific) calculators / log-tables / data tables may be specified if required.

Course Objectives

Course	Objecti	ves.										
1.	To imp	art the b	asic laws	of elect	rostatics							
2.	To imp	art the k	nowledg	e of elec	tromagn	etics.						
3.	To imp	art the k	nowledg	e of solu	tion to re	eal li <mark>fe p</mark> l	lan wave	problem	ns for va	rious bou	undary co	onditions.
4.	To imp	art the k	nowledg	e of char	racteristi	cs and in	npudenc	e transfo	rmation	on high	frequen	су
	transm	ission lir	ies.									
Course	Outcon	nes (CO)										
CO 1	Ability	to under	stand th	e basic la	aws of el	ectrostat	ics.					
CO 2	To und	erstand	the basic	laws of	electrom	agnetics						
CO 3	Ability	to provid	de solutio	on of rea	l life plar	n wave p	roblems	for vario	us boun	dary con	ditions.	
CO 4	To und	erstand	the chara	acteristic	s and im	pudence	transfor	mation of	on high f	requenc	y transm	ission
	lines											
Course	Outcon	nes (CO)	to Progr	amme O	utcomes	s (PO) ma	apping (s	scale 1: l	ow, 2: M	ledium, ä	3: High)	
	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO 1	3	3	3	3	2	1	1	-	2	1	-	2
CO 2	3	3	3	3	2	1	1	-	2	1	-	2
CO 3	3	3	3	3	2	1	1	-	2	1	-	2
<u> </u>	2	2	2	2	2	1	1		2	1		2

UNIT I

Introduction: Review of scalar and vector field, Dot and Cross products, Coordinate Systems-Cartesian, cylindrical and spherical. Vector representation of surface, Physical interpretation of gradient divergence and curl, Transformation of vectors in different co-ordinate systems, dirac-delta function.

Electrostatics: Electric field due to point-charges, line charges and surface charges, Electrostatic potential, Solution of Laplace and Poisson's equation in one dimension, M-method of image applied to plain boundaries, field mapping and conformal transformation, Electric flux density, Boundary conditions. Capacitance: calculation of capacitance for simple rectangular, cylindrical and spherical geometries, Electrostatic energy.

[T1,T2]

UNIT II

Magnetostatics : Magnetic Induction and Faraday's Law, Magnetic Flux Density, Magnetic Field Strength H, Ampere, Gauss Law in the Differential Vector Form, Permeability, Energy Stored in a Magnetic Field, Ampere's Law for a Current Element, Volume Distribution of Current , Ampere's Law Force Law, Magnetic Vector Potential, The Far Field of a Current Distribution, Maxwell's Equations: The Equation of Continuity for Time Varying Fields, Inconsistency of Ampere's Law, Maxwell's Equations, Conditions at a Boundary Surface.

UNIT III

Electromagnetic Waves: Continuity equations, Displacement current, Maxwell's equation, Boundary conditions, Plane wave equation and its solution in conducting and non-conducting media, Phasor notation, Phase velocity, Group velocity, Depth of penetration, Conductors and dielectrics, Impedance of conducting medium. Polarization, Reflection and refraction of plane waves at plane boundaries, Poynting vectors, and Poynting theorem. btechnotes.in

[T1,T2]

UNIT IV

Transmission Lines: Transmission line equations, Characteristic impendence, Distortion-less lines, Input impendence of a loss less line, computation of primary and secondary constants, Open and Short circuited lines, Standing wave and reflection losses, Impedance matching, Loading of lines, Input impedance of transmission lines, RF lines, Relation between reflection coefficient and voltage standing wave ratio (VSWR), Lines of different lengths $-\lambda/2$, $\lambda/4$, $\lambda/8$ lines, Losses in transmission lines, Smith chart and applications, impedance matching Single stub, Double stub. [T1,T2]

Textbook(s):

- 1. Matthew N. O. Sadiku , "Elements of Electromagnetics", Oxford University Press
- 2. E. C. Jordon, K. G. Balman, "Electromagnetic Waves & Radiation System" PHI 2nd Edition

Reference Books:

- 1. William H. Hayt, "Engineering Electromagnetics", TMH
- 2. J.D. Kraus, "Electromagnetics", TMH
- 3. David K. Cheng," Field and Wave Electromagnetic", 2nd Edition, Pearson Education Asia, 2001
- 4. John R. Reitz, "Foundations of Electromagnetic Theory". Pearson

[T1,T2]

Paper Code(s): ECC-210 / ECC-313	L	Ρ	С
Paper: Microprocessors and Microcontrollers	3	-	3

Marking	Scheme:											
1. Teac	hers Cont	inuous E	valuatio	n: 25 ma	arks							
2. Term	n end The	ory Exan	ninations	s: 75 mai	rks							
Instructio	ons for pa	per sett	er:									
1. There	e should b	e 9 ques	tions in	the term	end exa	minatio	ns quest	ion pape	r.			
2. The f	irst (1 st) q	uestion s	hould be	e compu	lsory and	l cover tl	he entire	syllabus.	This que	stion sho	uld be ob	jective,
single	e line ansv	vers or s	hort ans	wer type	e questio	on of tota	al 15 ma	rks.				
3. Apart	t from que	estion 1 v	which is	compuls	ory, rest	of the pa	aper sha	ll consist	of 4 units	as per th	ie syllabu	s. Every
unit s	unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be											
asked	d to atten	npt only	one of t	he two	question	s in the	unit. Ind	dividual q	uestions	may con	tain upto	5 sub-
parts	/ sub-que	estions. E	Each Uni	t shall ha	ave a ma	rks weig	htage of	15.				
4. The c	luestions	are to be	e framed	keeping	; in view	the lear	ning out	comes of	the cours	se / pape	r. The sta	ndard /
level	of the qu	estions t	o be ask	ed shoul	d be at t	he level	of the p	rescribed	textbook	ζ.		
5. The r	equireme	nt of (sc	ientific)	calculato	ors / log-	tables /	data – ta	ibles may	be speci	fied if rec	uired.	
Course O	bjectives	<u> </u>										
1.	To impa	rt knowl	edge ab	out arch	itecture	and inst	ruction s	set of 808	5 microp	rocessor	so that s	tudents
	can imp	lement 8	085 ass	embly la	nguage p	program	S.					
2.	To impa	rt knowl	edge ab	out arch	itecture	and inst	ruction s	set of 808	6 microp	rocessor	so that s	tudents
	can imp	lement 8	086 asse	embly la	nguage p	brogram	S.		0050			
3.	To impa	rt know	ledge ab	out inte	rfacing o	DT 8255,	8254/82	253, 8251	., 8259 a	nd I/O de	evices wit	th 8086
	micropr	ocessor.						60054		- 111	4 h - 1 - 1 - 4 -	
4.	To Impa	rt knowi	edge ab	out arch	itecture	and ope	ration o	r 8051 mi	crocontro	oller and	their inte	ertacing
Course	with the		u 170.				_					
	Ability to	coj.	tand and	disting	uich tho i	use of dif	foront 8	085 instru	ictions ti	ming dia	tram add	Irossing
01	modes	interrunt	ts and ar	nly thos	o instruc	rtions fo	r implem	penting a	sombly l	anguage	nrogram	an essing
<u> </u>	Ability t	n analyse	s the tim	ning diag	rams ur	derstan	d its inst	ruction s	ot accord	its mom	ory orga	nisation
	and will	impleme	ent the a	ing alag issembly	languag	e progra	ims int	erfacing	of memor	v with 80		ssfully
(03	Underst	and and	realize t	he interf	acing of	8255 (P	PI) 8254	/8255 (PI	T) 8251	(LISART)	8259 (PIC	^) 8279
	(Keyboa	rd and	display)	. Sample	a and h	old circ	uit. DA0	70200 (11	CD & St	epper m	otor wit	h 8086
	micropr	ocessor.						()) () -				
CO 4	Underst	and the	archite	cture an	d opera	tion of	8051 m	icrocontr	oller and	ability t	o use th	em for
	designin	g variou	s applica	tions ba	sed on 8	051 by i	mpleme	nting the	elaborat	e instruct	ion set.	
Course O	utcomes	(CO) to I	Program	me Outo	comes (P	O) Map	ping (Sca	ale - 1: Lo	w, 2: me	dium, 3:	High)	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO 1	3	3	3	2	-	1	1	-	-	-	-	1
CO 2	3	3	3	2	3	1	1	-		-		1
CO 3	3	3	3	2	3	1	1	-	1	-	-	1
CO 4	3	3	3	2	3	1	1	-	-	-	-	1

UNIT - I

Introduction to Microprocessor Systems: Architecture and PIN diagram of 8085, Timing Diagram, memory organization, addressing modes, interrupts. Assembly Language Programming.

UNIT – II

8086 Microprocessor: 8086 Architecture, difference between 8085 and 8086 architecture, generation of physical address, PIN diagram of 8086, Minimum Mode and Maximum mode, Bus cycle, Memory Organization, Memory

Interfacing, Addressing Modes, Assembler Directives, Instruction set of 8086, Assembly Language Programming, Hardware and Software Interrupts.

UNIT - III

Interfacing of 8086 with 8255, 8254/8253, 8251, 8259: Introduction, Generation of I/O Ports, Programmable Peripheral Interface (PPI)-Intel 8255, Sample-and-Hold Circuit and Multiplexer, Keyboard and Display Interface, Keyboard and Display Controller (8279), Programmable Interval timers (Intel 8253/8254), USART (8251), PIC (8259), DAC, ADC, LCD, Stepper Motor.

UNIT-IV

Overview of Microcontroller 8051: Introduction to 8051 Micro-controller, Architecture, Memory organization, Special function registers, Port Operation, Memory Interfacing, I/O Interfacing, Programming 8051 resources, interrupts, Programmer's model of 8051, Operand types, Operand addressing, Data transfer instructions, Arithmetic instructions, Logic instructions, Control transfer instructions, Timer & Counter Programming, Interrupt Programming.

Textbook(s):

- 1. Muhammad Ali Mazidi, "Microprocessors and Microcontrollers", Pearson, 2006
- 2. Douglas V Hall, "Microprocessors and Interfacing, Programming and Hardware" Tata McGraw Hill, 2006.
- 3. Ramesh Gaonkar, "MicroProcessor Architecture, Programming and Applications with the 8085", PHI

References:

- 1. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. MCKinlay "The 8051 Microcontroller and Embedded Systems", 2nd Edition, Pearson Education 2008.
- 2. Kenneth J. Ayala, "The 8086 Microprocessor: Programming & Interfacing The PC", Delmar Publishers, 2007.
- 3. A K Ray, K M Bhurchandi, "Advanced Microprocessors and Peripherals", Tata McGraw Hill, 2007.
- 4. Vaneet Singh, Gurmeet Singh, "Microprocessor and Interfacing", Satya Prakashan, 2007.

Paper Code(s): EEC-206	L	Ρ	С
Paper: Network Analysis and Synthesis	3	-	3

Marking Scheme:											
1. Teachers Continuous Evaluation: 25 marks											
2. Term end Theory Examinations: 75 marks											
Instructions for paper setter: btec	notes.in										
1. There should be 9 questions in the term end	1. There should be 9 questions in the term end examinations question paper.										
2. The first (1 st) question should be compuls	The first (1 st) question should be compulsory and cover the entire syllabus. This question should be										
objective, single line answers or short answer	objective, single line answers or short answer type question of total 15 marks.										
Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus.											
Every unit shall have two questions covering	Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student										
shall be asked to attempt only one of the tw	o questions	in the u	nit. Indiv	vidual qu	lestions	may con	tain upto				
5 sub-parts / sub-questions. Each Unit shall	have a mar	ks weigh	tage of 2	15.							
4. The questions are to be framed keeping in v	ew the lear	ning out	comes o	f the cou	irse / pa	per. The	standard				
/ level of the questions to be asked should b	e at the lev	el of the	prescril	oed textl	oook.						
5. The requirement of (scientific) calculators /	log-tables /	data – t	ables m	ay be sp	ecified if	require	d.				
Course Objectives:											
1. To understand the network theorem	n AC circuit										
2. To understand mathematical modellin	ng of circuit										
3. To understand two port parameter ar	id transfer f	function	·								
4. To understand realization of passive r	etwork and	filter.									
Course Outcome (CO):											
CO 1 Ability to apply network theorems in A	AC circuit.										
CO 2 Ability to determine transient respon	d of circuit.										
CO 3 Ability to determine two port parame	ter of circui	t.									
CO 4 Ability to realize the circuit from their	transfer fu	nction.				1					
Course Outcomes (CO) to Programme Outcome	es (PO) Map	oping (So	ale - 1:	Low, 2: r	nedium,	, 3: High)					
CO/PO PO01 PO02 PO03 PO04 PO0	5 PO06	PO07	PO08	PO09	PO10	PO11	PO12				
CO1 3 3 3 2	1	1	-	2	1		2				
CO 2 3 3 3 3 2	1	1	-	2	1	-	2				
CO 3 3 3 3 2	1	1	-	2	1	-	2				
CO 4 3 3 3 2	1	1	-	2	1	-	2				

UNIT-I

Application of Mesh current analysis, Node voltage analysis and Network theorems in AC circuits. Graph theory: concept of tree, tie set matrix, cut set matrix and application to solve electric networks.

UNIT-II

Periodic waveforms and signal synthesis, properties and applications of Laplace transform of complex waveform. System modeling in terms of differential equations and transient response of R, L, C, series and parallel circuits for impulse, step, ramp, sinusoidal and exponential signals by classical method and using Laplace transform.

UNIT-III

Two port networks – Introduction of two port parameters and their interconversion, interconnection of two 2-port networks, open circuit and short circuit impedances and ABCD constants, relation between image impedances and short circuit and open circuit impedances. Network functions, their properties and concept of transform impedance, Hurwitz polynomial.

UNIT IV

Positive real function and synthesis of LC, RC, RL Networks in Foster's I and II, Cauer's I& II forms, Introduction of passive filter and their classification, frequency response, characteristic impedance of low pass, high pass, Band Pass and Band reject prototype section.

Textbook(s): btechnotes.in

- 1. W H Hayt "Engineering Circuit Analysis" TMH Eighth Edition
- 2. Kuo, "Network analysis and synthesis" John Weily and Sons, 2nd Edition.

Reference Books:

- 1. S Salivahanan "Circuit Theory" Vikas Publishing House 1st Edition 2014
- 2. Van Valkenburg, "Network analysis" PHI, 2000.
- 3. Bhise, Chadda, Kulshreshtha, "Engineering network analysis and filter design" Umesh publication, 2000.
- 4. D. R. Choudhary, "Networks and Systems" New Age International, 1999
- 5. Allan H Robbins, W.C.Miller "Circuit Analysis theory and Practice" Cengage Learning Pub 5th Edition 2013
- 6. Bell "Electric Circuit" Oxford Publications 7th Edition.

TES.1 TECHN

Paper Code(s): BS-202	L	Ρ	С
Paper: Probability, Statistics and Linear Programming	4	-	4

- 1. Teachers Continuous Evaluation: 25 marks
- 2. Term end Theory Examinations: 75 marks

Instructions for paper setter:

- 1. There should be 9 questions in the term end examinations question paper.
- 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks.
- 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.
- 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.

5.	The requirement of (scientific) calculators ,	/log-tables/	data – tables may	be specified if required.
----	--------------------------------	-----------------	--------------	-------------------	---------------------------

Course Objectives:

	Course Objectives:													
	1:	1: To understand probability and probability distributions.												
2: To understand methods of summarization of data.														
3: To understand and use test for hypothesis.														
	4:	To und	erstand	methods	for solv	ing linea	r progra	mming p	roblems					
	Course Outcomes (CO):													
	CO1:	Ability	to solve	probabil	ity probl	ems and	describe	e probab	ility dist	ributions	i.			
	CO2:	Ability	to descri	ibe and s	ummaria	ze data.								
	CO3:	Ability to use test for hypothesis.												
	CO4:	Ability to formulate and solve linear programming problems.												
	Course O	utcome	s (CO to	Program	me Out	comes (F	O) Map	ping (sca	ale 1: lov	v, 2: Me	dium, 3:	High 🔳		
	CO/PO	PO01	PO02	PO03	PO04	PO05	PO 06	PO07	PO08	PO09	PO10	PO11	PO12	
	CO1	-	3	1	1	1	-	-	-	-	- C	1	2	
	CO2	-	3	1	1	1	-	-	-	-	1	1	2	
	СОЗ	-	3	2	2	1	-	-	-		-	2	2	
	CO4	-	3	3	3	1	-	-	-	-	-	2	2	

Unit I

Basics: Probability and Statistical models, Sample Spaces and Events, Counting Techniques, Interpretations and Axioms of Probability, Unions of Events and Addition Rules, Conditional Probability, Intersections of Events and Multiplication and Total Probability Rules, Independence, Bayes' Theorem, Random Variables.

Discrete and Continuous Random Variables and Distributions: Probability Distributions and Probability Mass / density Functions, Cumulative Distribution Functions, Mean and Variance of a Random Variable, Discrete and continuous Uniform Distribution, Binomial Distribution, Geometric and Negative Binomial Distributions, Hypergeometric Distribution, Poisson Distribution. Normal Distribution, Normal Approximation to the Binomial, and Poisson Distributions; Exponential Distribution, Erlang and Gamma Distributions, Weibull Distribution, Lognormal Distribution, Beta Distribution.

Unit II

Joint Probability Distributions for Two Random Variables, Conditional Probability Distributions and Independence, Joint Probability Distributions for Two Random Variables, Covariance and Correlation, Common Joint Distributions, Linear Functions of RandomVariables, General Functions of Random Variables, Moment-Generating Functions.

Numerical Summaries of Data, Stem-and-Leaf Diagrams, Frequency Distributions and Histograms, Box Plots, Time Sequence Plots, Scatter Diagrams, Probability Plots. Point Estimation, Sampling Distributions and the Central

Limit Theorem without proof, General Concepts of Point Estimation, Methods of Point Estimation, Statistical Intervals for a Single Sample.

Unit III

Hypotheses Testing for a SingleSample: Tests on the Mean of a Normal Distribution with Variance Known / Unknown, Tests on the Variance and Standard Deviationof a Normal Distribution, Tests on a Population Proportion, Testing for Goodness of Fit, Nonparametric tests (Signed, Wilcoxon), Similarly Statistical Inference forTwo Samples.

Regression and Correlation: Linear Regression, Least Squares Estimators, Hypotheses testing for simple linear regression, Confidence Intervals, Adequacy of model, Correlation, Transformed Variables, Logistic Regression. Similarly, for multiple linear regression including aspects of MLR.

Unit IV

Linear Programming: Introduction, formulation of problem, Graphical method, Canonical and Standard form of LPP, Simplex method, Duality concept, Dual simplex method, Transportation and Assignment problem.

Textbooks:

1. Applied Statistics and Probability for Engineers by Douglas G. Montgomery and Runger, Wiley, 2018

2. Linear Programming by G. Hadley, Narosa, 2002

References:

- 1. *Miller and Freund's Probability and Statistics for Engineers* by Richard A. Johnson, Pearson, 10th Ed., 2018.
- 2. *Probability & Statistics for Engineers & Scientists* by Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying Ye, Pearson, 2016.
- 3. Statistics and probability with applications for engineers and scientists using Minitab, R and JMP, C. Gupta, Irwin Guttman, and Kalanka P. Jayalath, Wiley, 2020.
- 4. Probability and Statistics for Engineering and the Sciences, Jay Devore, Cengage Learning, 2014.

TECHNO

- 5. *Probability and Statistics in Emgineering*, William W. Hines, Douglas C. Montgomery, David M. Goldman, and Connie M. Borror, Wiley, 2003.
- 6. Operations Research: An Introduction by Hamdy A. Taha, Pearson, 10th Edition, 2016

btechnotes.in btechnotes.in btechnotes.in btechnotes.in btechnotes.in btechnotes.in btechnotes.in

Paper Code(s): HS-204	L	Ρ	С
Paper: Technical Writing	2	-	2

	Marking Scheme:												
I	1. Teac	achers Continuous Evaluation: 25 marks											
	2. Tern	m end Theory Examinations: 75 marks											
L	3. This	This is an NUES paper, hence all examinations to be conducted by the concerned teacher.											
	Instruction for paper setter:												
	1. There	re should be 9 questions in the term end examinations question paper.											
	2. The	e first (1 st) question should be compulsory and cover the entire syllabus. This question should be											
	obje	ctive, sin	gle line a	inswers	or short	answer t	ype que	stion of t	total 15 ı	marks.			
	3. Apar	art from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus.											
	Every	very unit shall have two questions covering the corresponding unit of the syllabus. However, the student											
	shall	be asked	d to atter	mpt only	one of t	he two q	luestion	s in the u	nit. Indiv	/idual qu	estions r	may cont	tain upto
	5 sub	o-parts /	sub-que	stions. E	ach Unit	shall hav	ve a mar	ks weigh	tage of 1	L5.			
	4. The c	question	s are to b	oe frame	d keepin	g in view	the lear	ning out	comes o	f the cou	irse / pap	per. The	standard
	/ leve	el of the	questior	is to be a	isked sho	ould be a	at the lev	el of the	e prescrik	oed text	book.		
	5. The r	equirem	ent of (s	cientific) calculat	tors / log	-tables /	′ data – t	ables ma	ay be spe	ecified if	required	<u>l.</u>
	Course C	bjective	s:				_						
	1:	To improve grammar and sentence structure and build vocabulary.											
	2:	To und	erstand	how to v	vrite diff	erent typ	pes of wi	ritings.					
	3:	To und	erstand	how to c	ompose	differen	t types c	of busine	ss docun	nents.			
_	4:	To und	erstand	business	ethics a	nd devel	op soft s	skills.		_			
L	Course C	Outcome	s (CO):				_						
	CO1:	Ability	to impro	ve gram	mar and	sentenc	e structu	ure and b	ouild voc	abulary.			
	CO2:	Ability to write different types of writings with clarity.											
	CO3:	: Ability to write different types of business documents.											
_	CO4:	04: Ability to apply business ethics and enhance personality.											
L	Course C	Outcome	s (CO to	Program	nme Out	comes (I	PO) Map	ping (sca	ale 1: lov	v, 2: Me	dium, 3:	High	
	CO/PO	PO01	PO02	PO03	PO04	PO05	P006	PO07	P008	PO09	PO10	PO11	PO12
L	CO1	-	-	-	-	-	1	-	-	-	3		-
	СО2	-	-	-	-	6-	1	-	-	-	3	-	-
Γ	CO3	-	-	-	-	-	1	-	-	-	3	-	-

Unit I

CO4

_

_

Grammar and Vocabulary--- Types of sentences (simple, complex and compound) and use of connectives in sentences, Subject-verb agreement, Comprehension, Synonyms and Antonyms, Homophones and Homonyms, Word Formation: Prefixes and Suffixes, Indianism, Misappropriation and Redundant Words, Question Tags and Short Responses.

1

3

3

Unit II

Writing Styles -- Expository, Explanatory, Descriptive, Argumentative and Narrative. Precis writing, Visual Aids in Technical Writing, Plagiarism and Language Sensitivity in Technical Writing, Dialogue Writing, Proposals: Purpose and Types.

Unit III

Letters at the Workplace—letter writing: Request, Sales, Enquiry, Order and Complaint. Job Application---Resume and Cover letter, Difference between Resume and CV, Preparation for Interview. Meeting Documentation--- Notice, Memorandum, Circular, Agenda, Office Order and Minutes of meeting, Writing Instructions.

Unit IV

Ethics and Personality Development-----The Role of Ethics in Business Communication—Ethical Principles, Time Management, Self-Analysis through SWOT and JOHARI Window, Emotional Intelligence and Leadership Skills, Team Building, Career Planning, Self Esteem.

Textbook:

1. Meenakshi Raman and Sangeeta Sharma, Technical Communication: Principles and Practice, Oxford University Press, New Delhi (2015).

References:

 Sanjay Kumar and Pushp Lata, Communication Skills, Oxford University Press, New Delhi (2015).
 Herta A Murphy, Herbert W Hildebrandt, Jane P Thomas, Effective Business Communication, Tata McGraw-Hill, Hill Publishing Company Limited, Seventh Edition.

BIE CHNOIES IN

btechnotes.in WISHES YOU GOOD LUCK!